4 results (0,15454 seconds)

Brand

Merchant

Price (EUR)

Reset filter

Products
From
Shops

Fortran 2018 with Parallel Programming

Fortran 2018 with Parallel Programming

The programming language Fortran dates back to 1957 when a team of IBM engineers released the first Fortran Compiler. During the past 60 years the language had been revised and updated several times to incorporate more features to enable writing clean and structured computer programs. The present version is Fortran 2018. Since the dawn of the computer era there had been a constant demand for a “larger” and “faster” machine. To increase the speed there are three hurdles. The density of the active components on a VLSI chip cannot be increased indefinitely and with the increase of the density heat dissipation becomes a major problem. Finally the speed of any signal cannot exceed the velocity of the light. However by using several inexpensive processors in parallel coupled with specialized software and hardware programmers can achieve computing speed similar to a supercomputer. This book can be used to learn the modern Fortran from the beginning and the technique of developing parallel programs using Fortran. It is for anyone who wants to learn Fortran. Knowledge beyond high school mathematics is not required. There is not another book on the market yet which deals with Fortran 2018 as well as parallel programming. FEATURES Descriptions of majority of Fortran 2018 instructions Numerical Model String with Variable Length IEEE Arithmetic and Exceptions Dynamic Memory Management Pointers Bit handling C-Fortran Interoperability Object Oriented Programming Parallel Programming using Coarray Parallel Programming using OpenMP Parallel Programming using Message Passing Interface (MPI) THE AUTHOR Dr Subrata Ray is a retired Professor Indian Association for the Cultivation of Science Kolkata. | Fortran 2018 with Parallel Programming

GBP 140.00
1

Statistical Machine Learning A Unified Framework

Statistical Machine Learning A Unified Framework

The recent rapid growth in the variety and complexity of new machine learning architectures requires the development of improved methods for designing analyzing evaluating and communicating machine learning technologies. Statistical Machine Learning: A Unified Framework provides students engineers and scientists with tools from mathematical statistics and nonlinear optimization theory to become experts in the field of machine learning. In particular the material in this text directly supports the mathematical analysis and design of old new and not-yet-invented nonlinear high-dimensional machine learning algorithms. Features: Unified empirical risk minimization framework supports rigorous mathematical analyses of widely used supervised unsupervised and reinforcement machine learning algorithms Matrix calculus methods for supporting machine learning analysis and design applications Explicit conditions for ensuring convergence of adaptive batch minibatch MCEM and MCMC learning algorithms that minimize both unimodal and multimodal objective functions Explicit conditions for characterizing asymptotic properties of M-estimators and model selection criteria such as AIC and BIC in the presence of possible model misspecification This advanced text is suitable for graduate students or highly motivated undergraduate students in statistics computer science electrical engineering and applied mathematics. The text is self-contained and only assumes knowledge of lower-division linear algebra and upper-division probability theory. Students professional engineers and multidisciplinary scientists possessing these minimal prerequisites will find this text challenging yet accessible. About the Author: Richard M. Golden (Ph. D. M. S. E. E. B. S. E. E. ) is Professor of Cognitive Science and Participating Faculty Member in Electrical Engineering at the University of Texas at Dallas. Dr. Golden has published articles and given talks at scientific conferences on a wide range of topics in the fields of both statistics and machine learning over the past three decades. His long-term research interests include identifying conditions for the convergence of deterministic and stochastic machine learning algorithms and investigating estimation and inference in the presence of possibly misspecified probability models. | Statistical Machine Learning A Unified Framework

GBP 99.99
1

Sets Functions and Logic An Introduction to Abstract Mathematics Third Edition

Sets Functions and Logic An Introduction to Abstract Mathematics Third Edition

Keith Devlin. You know him. You've read his columns in MAA Online you've heard him on the radio and you've seen his popular mathematics books. In between all those activities and his own research he's been hard at work revising Sets Functions and Logic his standard-setting text that has smoothed the road to pure mathematics for legions of undergraduate students. Now in its third edition Devlin has fully reworked the book to reflect a new generation. The narrative is more lively and less textbook-like. Remarks and asides link the topics presented to the real world of students' experience. The chapter on complex numbers and the discussion of formal symbolic logic are gone in favor of more exercises and a new introductory chapter on the nature of mathematics-one that motivates readers and sets the stage for the challenges that lie ahead. Students crossing the bridge from calculus to higher mathematics need and deserve all the help they can get. Sets Functions and Logic Third Edition is an affordable little book that all of your transition-course students not only can afford but will actually read and enjoy and learn from. About the AuthorDr. Keith Devlin is Executive Director of Stanford University's Center for the Study of Language and Information and a Consulting Professor of Mathematics at Stanford. He has written 23 books one interactive book on CD-ROM and over 70 published research articles. He is a Fellow of the American Association for the Advancement of Science a World Economic Forum Fellow and a former member of the Mathematical Sciences Education Board of the National Academy of Sciences . Dr. Devlin is also one of the world's leading popularizers of mathematics. Known as The Math Guy on NPR's Weekend Edition he is a frequent contributor to other local and national radio and TV shows in the US and Britain writes a monthly column for the Web journal MAA Online and regularly writes on mathematics and co | Sets Functions and Logic An Introduction to Abstract Mathematics Third Edition

GBP 175.00
1

Financial Mathematics Two Volume Set

Financial Mathematics Two Volume Set

This textbook provides complete coverage of discrete-time financial models that form the cornerstones of financial derivative pricing theory. Unlike similar texts in the field this one presents multiple problem-solving approaches linking related comprehensive techniques for pricing different types of financial derivatives. Key features: In-depth coverage of discrete-time theory and methodology. Numerous fully worked out examples and exercises in every chapter. Mathematically rigorous and consistent yet bridging various basic and more advanced concepts. Judicious balance of financial theory mathematical and computational methods. Guide to Material. This revision contains: Almost 200 pages worth of new material in all chapters. A new chapter on elementary probability theory. An expanded the set of solved problems and additional exercises. Answers to all exercises. This book is a comprehensive self-contained and unified treatment of the main theory and application of mathematical methods behind modern-day financial mathematics. Table of Contents List of Figures and Tables Preface I Introduction to Pricing and Management of Financial Securities 1 Mathematics of Compounding 2 Primer on Pricing Risky Securities 3 Portfolio Management 4 Primer on Derivative Securities II Discrete-Time Modelling 5 Single-Period Arrow–Debreu Models 6 Introduction to Discrete-Time Stochastic Calculus 7 Replication and Pricing in the Binomial Tree Model 8 General Multi-Asset Multi-Period Model Appendices A Elementary Probability Theory B Glossary of Symbols and Abbreviations C Answers and Hints to Exercises References Index Biographies Giuseppe Campolieti is Professor of Mathematics at Wilfrid Laurier University in Waterloo Canada. He has been Natural Sciences and Engineering Research Council postdoctoral research fellow and university research fellow at the University of Toronto. In 1998 he joined the Masters in Mathematical Finance as an instructor and later as an adjunct professor in financial mathematics until 2002. Dr. Campolieti also founded a financial software and consulting company in 1998. He joined Laurier in 2002 as Associate Professor of Mathematics and as SHARCNET Chair in Financial Mathematics. Roman N. Makarov is Associate Professor and Chair of Mathematics at Wilfrid Laurier University. Prior to joining Laurier in 2003 he was an Assistant Professor of Mathematics at Siberian State University of Telecommunications and Informatics and a senior research fellow at the Laboratory of Monte Carlo Methods at the Institute of Computational Mathematics and Mathematical Geophysics in Novosibirsk Russia. | Financial Mathematics Two Volume Set

GBP 130.00
1